
Structure from Motion

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

03/07/17

Affine SfM slides adapted from Martial Hebert

This class: structure from motion

• Incremental perspective structure from motion

• Global affine structure from motion

Last Class: Epipolar Geometry

C

• Point x in left image corresponds to epipolar line l’ in right
image

• Epipolar line passes through the epipole (the intersection of
the cameras’ baseline with the image plane

C

Last Class: Fundamental Matrix

• Fundamental matrix maps from a point in one
image to a line in the other

• If x and x’ correspond to the same 3d point X:

Incremental Structure from Motion (SfM)

Goal: Solve for camera poses and 3D points in scene

Incremental SfM

1. Compute features

2. Match images

3. Reconstruct
a) Solve for pose and 3D points in two cameras

b) Solve for pose of additional camera(s) that observe
reconstructed 3D points

c) Solve for new 3D points that are viewed in at least
two cameras

d) Bundle adjust to minimize reprojection error

Incremental SFM: detect features

• Feature types: SIFT, ORB, Hessian-Laplacian, …

…

Each circle represents a set of detected features

im 1 im 2 im 3 im n

Incremental SFM: match features and images

For each pair of images:
1. Match feature descriptors via approximate nearest neighbor
2. Solve for F and find inlier feature correspondences

• Speed tricks
– Match only 100 largest features first
– Use a bag-of-words method to find candidate matches
– Perform initial filtering based on GPS coordinates, if available
– Use known matches to predict new ones

…

Points of same color have been matched to each other

Incremental SFM: create tracks graph

…

im 1 im 2 im 3 im n
…

tracks graph: bipartite graph between observed 3D points and images

Incremental SFM: initialize reconstruction

im 1 im 2 im 3 im n…

1. Choose two images that are likely to provide a stable estimate of
relative pose

– E.g.,
inliers for 𝐻

inliers for 𝐹
< 0.7 and many inliers for 𝐹

2. Get focal lengths from EXIF, estimate essential matrix using 5-
point algorithm, extract pose 𝑅2, 𝑡2 with 𝑅1 = 𝑰, 𝑡1 = 𝟎

3. Solve for 3D points given poses
4. Perform bundle adjustment to refine points and poses

filled circles = “triangulated” points

filled rectangles = “resectioned” images (solved pose)

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

Triangulation: Linear Solution

• Generally, rays Cx
and C’x’ will not
exactly intersect

• Can solve via SVD,
finding a least squares
solution to a system of
equations

X

x x'

XPx PXx 

0AX 





























TT

TT

TT

TT

v

u

v

u

23

13

23

13

pp

pp

pp

pp

A

Further reading: HZ p. 312-313

Triangulation: Linear Solution

Given P, P’, x, x’
1. Precondition points and projection

matrices
2. Create matrix A
3. [U, S, V] = svd(A)
4. X = V(:, end)

Pros and Cons
• Works for any number of

corresponding images
• Not projectively invariant



















1

v

u

wx























1

v

u

wx


















T

T

T

3

2

1

p

p

p

P





























TT

TT

TT

TT

v

u

v

u

23

13

23

13

pp

pp

pp

pp

A
























T

T

T

3

2

1

p

p

p

P

Code: http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

Triangulation: Non-linear Solution

• Minimize projected error while satisfying

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision)

 𝒙′

𝒙′

𝒙

 𝒙

𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, 𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, 𝒙′ 2

 𝒙′
𝑇
𝑭 𝒙=0

Triangulation: Non-linear Solution

• Minimize projected error while satisfying

• Solution is a 6-degree polynomial of t,
minimizing

Further reading: HZ p. 318

 𝒙′
𝑇
𝑭 𝒙=0

𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, 𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, 𝒙′ 2

Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error

 
2

1 1

,),(
 


m

i

n

j

jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj

Incremental SFM: grow reconstruction

im 1 im 2 im 3 im n…

1. Resection: solve pose for image(s) that have the most triangulated
points

2. Triangulate: solve for any new points that have at least two cameras
3. Remove 3D points that are outliers
4. Bundle adjust

– For speed, only do full bundle adjust after some percent of new images are
resectioned

5. Optionally, align with GPS from EXIF or ground control points (GCP)

filled circles = “triangulated” points

filled rectangles = “resectioned” images (solved pose)

Incremental SFM: grow reconstruction

im 1 im 2 im 3 im n…

1. Resection: solve pose for image(s) that have the most triangulated
points

2. Triangulate: solve for any new points that have at least two cameras
3. Remove 3D points that are outliers
4. Bundle adjust

– For speed, only do full bundle adjust after some percent of new images are
resectioned

5. Optionally, align with GPS from EXIF or ground control points (GCP)

filled circles = “triangulated” points

filled rectangles = “resectioned” images (solved pose)

Important recent papers and methods for SfM

• OpenMVG
– https://github.com/openMVG/openMVG
– http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html

(Moulin et al. ICCV 2013)
– Software has global and incremental methods

• OpenSfM (software only):
https://github.com/mapillary/OpenSfM
– Basis for my description of incremental SfM

• Visual SfM: Visual SfM (Wu 2013)
– Used to be the best incremental SfM software (but not

anymore and closed source); paper still very good

Reconstruction of Cornell (Crandall et al. ECCV 2011)

http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html
http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html
https://github.com/mapillary/OpenSfM
http://ccwu.me/vsfm/vsfm.pdf
https://www.youtube.com/watch?v=hlKlbpHpNEE

Multiview Stereo (MVS)

“Multiview Stereo: a tutorial” by Yasu
Furukawa
http://www.cse.wustl.edu/~furukawa/papers/fnt_mvs.pdf

Software:
– MVE: https://github.com/simonfuhrmann/mve

Main ideas:
– Initialize with SfM
– MVS: For each image, find 2+ other images

with similar viewpoints but substantial
baselines

• Grow regions from sparse points in SfM
• Create a patch around each pixel and solve for

depth, surface normal, and relative intensity that is
consistent with all images

http://www.cse.wustl.edu/~furukawa/papers/fnt_mvs.pdf
https://github.com/simonfuhrmann/mve

Surface Reconstruction

Floating scale surface reconstruction:
http://www.gcc.tu-darmstadt.de/home/proj/fssr/

Software:
– MVE:

https://github.com/simonfuhrmann/mve

Main ideas:
– Initialize with MVS

– Merge 3D points from all depth images

– Estimate implicit surface function in octree
and find zero crossings

Implicit Surface Example

http://www.gcc.tu-darmstadt.de/home/proj/fssr/
https://github.com/simonfuhrmann/mve

Where does SfM fail?

• Not enough images with enough overlap
– Disconnected reconstructions

• Featureless or reflecting surfaces
– No matches or bad matches

• Images with pure rotations
– Recovery of “F” can fail or bad pose reconstruction

• Repeated structures (buildings or bridges)
– Many consistent bad matches results in inconsistent

reconstructions

Structure from motion under orthographic projection

3D Reconstruction of a Rotating Ping-Pong Ball

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

•Reasonable choice when
•Change in depth of points in scene is much smaller than distance to camera
•Cameras do not move towards or away from the scene

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Orthographic projection for
rotated/translated camera

x

X
a1

a2

Affine structure from motion

• Affine projection is a linear mapping + translation in
inhomogeneous coordinates

1. We are given corresponding 2D points (x) in several frames

2. We want to estimate the 3D points (X) and the affine
parameters of each camera (A)

x

X
a1

a2

tAXx 














































y

x

t

t

Z

Y

X

aaa

aaa

y

x

232221

131211

Projection of

world origin

Step 1: Simplify by getting rid of t: shift to centroid of
points for each camera





n

k

ikijij
n 1

1
ˆ xxxiii tXAx 

  ji

n

k

kji

n

k

ikiiji

n

k

ikij
nnn

XAXXAtXAtXAxx ˆ111

111









 



jiij XAx ˆˆ 

2d normalized point

(observed)

3d normalized point

Linear (affine) mapping

Suppose we know 3D points and affine
camera parameters …

then, we can compute the observed 2d
positions of each point

 







































mnmm

n

n

n

m xxx

xxx

xxx

XXX

A

A

A

ˆˆˆ

ˆˆˆ

ˆˆˆ

21

22221

11211

21

2

1












Camera Parameters (2mx3)

3D Points (3xn)

2D Image Points (2mxn)

What if we instead observe corresponding
2d image points?

Can we recover the camera parameters and 3d
points?

cameras (2 m)

points (n)

 n

mmnmm

n

n

XXX

A

A

A

xxx

xxx

xxx

D 










21

2

1

21

22221

11211

?

ˆˆˆ

ˆˆˆ

ˆˆˆ









































What rank is the matrix of 2D points?

Factorizing the measurement matrix

Source: M. Hebert

AX

Factorizing the measurement matrix

Source: M. Hebert

• Singular value decomposition of D:

Factorizing the measurement matrix

Source: M. Hebert

• Singular value decomposition of D:

Factorizing the measurement matrix

Source: M. Hebert

• Obtaining a factorization from SVD:

Factorizing the measurement matrix

Source: M. Hebert

• Obtaining a factorization from SVD:

A
~

X
~

Affine ambiguity

• The decomposition is not unique. We get the
same D by using any 3×3 matrix C and applying
the transformations A → AC, X →C-1X

• That is because we have only an affine
transformation and we have not enforced any
Euclidean constraints (like forcing the image
axes to be perpendicular, for example)

Source: M. Hebert

S
~

A
~

X
~

• Orthographic: image axes are perpendicular
and of unit length

Eliminating the affine ambiguity

x

X
a1

a2

a1 · a2 = 0

|a1|
2 = |a2|

2 = 1

Source: M. Hebert

Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition:
L = CCT

• Update A and X: A = AC, X = C-1X











T

i

T

i

i

2

1

~

~
~

a

a
Awhere

1~~
11 i

TT

i aCCa

1~~
22 i

TT

i aCCa

0~~
21 i

TT

i aCCa

~ ~

Three equations for each image i

Algorithm summary
• Given: m images and n tracked features xij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

– Column j contains the projection of point j in all views
– Row i contains one coordinate of the projections of all

the n points in image i

• Factorize D:
– Compute SVD: D = U W VT

– Create U3 by taking the first 3 columns of U
– Create V3 by taking the first 3 columns of V
– Create W3 by taking the upper left 3 × 3 block of W

• Create the motion (affine) and shape (3D) matrices:
A = U3W3

½ and X = W3
½ V3

T

• Eliminate affine ambiguity

Source: M. Hebert

Dealing with missing data

• So far, we have assumed that all points are
visible in all views

• In reality, the measurement matrix typically
looks something like this:

One solution:
– solve using a dense submatrix of visible points

– Iteratively add new cameras

cameras

points

Reconstruction results (your HW 3.4)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 9(2):137-154, November 1992.

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

Further reading

• Short explanation of Affine SfM: class notes
from Lischinksi and Gruber

http://www.cs.huji.ac.il/~csip/sfm.pdf

• Clear explanation of epipolar geometry and
projective SfM
– http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBo

ok/2008-SFM-chapters.pdf

http://www.cs.huji.ac.il/~csip/sfm.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf

Review of Affine SfM from Interest Points

1. Detect interest points (e.g., Harris)














)()(

)()(
)(),(

2

2

DyDyx

DyxDx

IDI
III

III
g






51

1. Image

derivatives

2. Square of

derivatives

3. Gaussian

filter g(I)

Ix Iy

Ix
2 Iy

2 IxIy

g(Ix
2) g(Iy

2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg  

])),([trace()],(det[2

DIDIhar 

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det

trace

M

M

 

 



 

Review of Affine SfM from Interest Points

2. Correspondence via Lucas-Kanade tracking

a) Initialize (x’,y’) = (x,y)

b) Compute (u,v) by

c) Shift window by (u, v): x’=x’+u; y’=y’+v;

d) Recalculate It

e) Repeat steps 2-4 until small change

• Use interpolation for subpixel values

2nd moment matrix for feature

patch in first image
displacement

It = I(x’, y’, t+1) - I(x, y, t)

Original (x,y) position

Review of Affine SfM from Interest Points

3. Get Affine camera matrix and 3D points using
Tomasi-Kanade factorization

Solve for

orthographic

constraints

Tips for HW 3

• Problem 1: vanishing points
– Use lots of lines to estimate vanishing points
– For estimation of VP from lots of lines, see single-view

geometry chapter, or use robust estimator of a central
intersection point

– For obtaining intrinsic camera matrix, numerical solver
(e.g., fsolve in matlab) may be helpful

• Problem 3: epipolar geometry
– Use reprojection distance for inlier check (make sure to

compute line to point distance correctly)

• Problem 4: structure from motion
– Use Matlab’s chol and svd
– If you weren’t able to get tracking to work from HW2 can

use provided points

Distance of point to epipolar line

x.
x‘=[u v 1]

.

l=Fx=[a b c]

𝑑 𝑙, 𝑥′ =
|𝑎𝑢 + 𝑏𝑣 + 𝑐|

𝑎2 + 𝑏2

The Reading List
• “A computer algorithm for reconstructing a scene from two images”, Longuet-

Higgins, Nature 1981

• “Shape and motion from image streams under orthography:
A factorization method.” C. Tomasi and T. Kanade, IJCV, 9(2):137-154, November
1992

• “In defense of the eight-point algorithm”, Hartley, PAMI 1997

• “An efficient solution to the five-point relative pose problem”, Nister, PAMI 2004

• “Accurate, dense, and robust multiview stereopsis”, Furukawa and Ponce, CVPR
2007

• “Photo tourism: exploring image collections in 3d”, ACM SIGGRAPH 2006

• “Building Rome in a day”, Agarwal et al., ICCV 2009

(also see reading from earlier slides)

http://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
ftp://vista.eng.tau.ac.il/dropbox/SimonKolotov-Thesis/Articles/15.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/cvpr07a.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://research.microsoft.com/pubs/156722/agarwal-rome-cacm11.pdf

Next class

• Clustering and using clustered interest points
for matching images in a large database

